Table I. Comparison of K'_p/K'_1 As Calculated by MARFRA and SMARME Equations with Those Tabulated by Millero (8) at 0 and 25 °C for Sea Water

press., bar	Millero (0 °C) ^a	MARFRA or SMARME ^a	Millero (25 °C) ^b	MARFRA or SMARME ^b
1	1.00	1.00	1.00	1.00
200	1.19	1.19	1.15	1.15_{5}
400	1.40	1.42	1.33	1.34
600	1.63	1.66	1.51	1.54
800	1.88	1.91	1.72	1.75_{5}
1000	2.16	2.20	1.95	1.99

^a Average difference = 0.024. ^b Average difference = 0.024.

Marshall and Franck (3) have published a generalized equation (MARFRA) for estimating the ion product of water, and proposed its applicability up to 1000 °C and 10000 bar. This equation has been found to be in good agreement with the reported values (1, 5, 6). The equation is

$$\begin{split} \log \ & \mathcal{K}_{\mathbf{w}}^{0}(\text{MARFRA}) = -4.098 - 3.2452 \times 10^{3} T^{-1} + \\ & 2.2362 \times 10^{5} T^{-2} - 3.9840 \times 10^{7} T^{-3} + \\ & (13.937 - 1.2623 \times 10^{3} T^{-1} + 8.5641 \times 10^{5} T^{-2}) \log \ \rho_{\mathbf{w}} \ (4) \end{split}$$

where ρ_w is the density of pure water.

In order to use eq 2 (SMARME) and eq 4 (MARFRA) for estimating the ion product of water in sea water, we substitute the density of pure water by the density of sea water. The remaining portions of the equations do not change. We use a prime for sea water in order to distinguish it from that for pure water. Densities of sea water can be taken from UNESCO tables (7).

Results and Discussion

According to Millero (8), the directly measured experimental values of the ion product of water in sea water are not available at high pressures. He obtained them by using ΔV and Δk values which are the experimentally determined values of volume and compressibility changes. He also listed the values of K'_p/K'_1 at different pressures at 0 and 25 °C.

In Table I, we list the values of K'_{p}/K'_{1} obtained from the uses of eq 2 and 4, along with those obtained by Millero (8) at both 0 and 25 °C for ready comparison. The values of log K'_{w} used in these calculations were -14.386 and -13.776 at 0 and

An inspection of Table I shows that both SMARME and MARFRA yield the same predictions of log K'_w . The average difference between the calculated values and those obtained by Millero are 0.02 and 0.007 units for K'_{p}/K'_{1} and log K'_{w} , respectively.

The log K'_{w} values thus obtained from either equation, when differentiated with respect to pressure and temperature, yield the change in molar volume (ΔV^*) and enthalpy (ΔH^*), respectively, upon ionization. The ΔV^* thus obtained is -18.07 cm³ mol⁻¹, which agrees closely with that of Millero (-18.10 cm³ mol⁻¹). The ΔH^* is 13.63 kcal mol⁻¹, which is nearly 0.30 kcal mol⁻¹ higher than that of pure water.

Thus, it is clear that by introduction of the density of sea water at a given pressure, the equation of Marshall and Franck describes some reliably calculated values of the ion product of water in sea water. The equation of Sweeton, Mesmer, and Baes with an added density relationship based on the Marshall and Franck equation also provides these values.

Acknowledgment

I thank Professors E. U. Franck and Loren G. Hepler for many suggestions to improve the quality of the manuscript. I also thank an anonymous reviewer for pointing out errors in the manuscript through his excellent reviews.

Registry No. Water, 7732-18-5.

Literature Cited

- (1) Sweeton, F. H.; Mesmer, R. E.; Baes, C. F. J. Solution Chem. 1974, 3, 191.
- Marshall, W. L.; Mesmer, R. E. J. Solution Chem. 1981, 10, 121. Marshall, W. L.; Franck, E. U. J. Phys. Chem. Ref. Data 1981, 10, (3) 295.
- Quist, A. S. J. Phys. Chem. 1970, 74, 3396.
- (5) Olofsson, G.; Hepler, L. G. J. Solution Chem. 1975, 4, 127.
- Whitfield, M. J. Chem. Eng. Data 1972, 17, 124. "UNESCO, Tenth Report of the Joint Panel on Oceanographic Tables and Standards, 1-5 September, 1980, Sydney, B.C., Canada; Unesco Technical Papers in Marine Science 1981, 36, 25.
- Millero, F. J. In Influence of Pressure on Chemical Processes in Sea; Riley, J.P., Skirrow, G., Eds.; Chemical Oceanography, Vol. 8; Academic: London, 1983. (8)

Received for review September 30, 1985. Revised manuscript received June 1, 1987. Accepted August 18, 1987.

Densities of Binary Aqueous Solutions of 306 Inorganic Substances

P. Novotný* and O. Söhnel

Chemopetrol, Research Institute of Inorganic Chemistry, Revolucini 86, 400 60 Ústi nad Labern, Czechoslovakia

Constants of equations expressing the density of binary aqueous solutions as a function of concentration, and where possible also of temperature, are given for 306 inorganic substances. The goodness of fit and limits of the equation validity are indicated for each system.

Introduction

The density of aqueous solutions of inorganic substances and its dependence on solution concentration and/or temperature represents important information for chemical engineering and physical chemistry. A comparatively large volume of relevant data for a wide variety of systems is available in the periodical literature and the existing monographs. However, the presentation of density data, even in the recent monographs (1, 2), is not very suitable for direct use as they are given for particular concentrations and temperatures, which rarely cover the whole interval required. Moreover, different sources present mutually inconsistent sets of data for most systems.

We have, therefore, critically evaluated the existing density data for binary aqueous solutions of inorganic substances and those regarded as reliable, correlated in a consistent manner.

Table I. Concentr	Constants of Eq ation and Tempe	1 Expressi erature	ng the Densi	ty of Aque	eous Solution	ns of 167 Su	bstances a	s a Funct	ion of Solutio	n
1 .	1		A	~	E	D				

substance	$A \times 10^{-2}$	- B × 10	$C \times 10^{3}$	-D	$E \times 10^2$	$-F \times 10^4$	$s_r \times 10^2$	t	C _{max}	ref
AgClO ₄	1.727	2.858	2.138	4.015	7.604	4.963	18.7	0-100	satd	27-31
AgNO ₃	1.473	3.442	2.869	4.298	11.74	9.798	29.5	0 - 100	satd	5-7
$Al(ClO_4)_3$	2.255	1.644	0	6.674	0	0	3.2	10-40	50	32
$Al(NO_3)_3$	1.785	18.85	84.24	25.78	408.4	1806	20.0	10 - 35	38	6,7
$\operatorname{Ai}_2(\operatorname{SU}_4)_3$ BoBr	3.699	0.810	0.346 1.387	00.22 3.546	39.07	33.00	10.1	0-100	sato	5,33,34 5,6,22
	2.369	1.535	-3 400	7 075	-84.98	-47.04	36.1	0-100	satu	5, 6, 22 6
Ba(ClO ₂)	2.368	8.322	19.68	-0.1765	-2.594	84.22	20.0	0-60	satd	5.6
Bal ₂	3.379	5.313	3.887	8.130	23.12	16.67	7.6	0-100	satd	5
$Ba(NO_3)_2$	2.738	28.04	5.422	123.8	625.2	424.1	6.0	0 - 70	satd	5-7, 22
$CaBr_2$	1.740	2.575	2.359	8.300	7.635	7.212	4.8	0 - 100	satd	5
$CaCl_2$	1.012	61.56	1.028	9.749	96.94	3.165	14.7	0-100	satd	5, 6, 22
Cal_2	2.696	12.66	10.85	25.46	99.78	86.93	29.0	0-100	40 aatd	5, 6, 22
CdBr	2 376	2.052	2 510	6.420	16 42	-4.225	10.2	0-100	said	5,00-00 5,99
	1.637	2.355	1.325	6.428	6.973	3.648	8.9	0-100	satd	5, 6, 22
CdI ₂	3.073	2.411	1.364	4.539	4.843	2.609	7.2	0-100	satd	5, 6, 22
$Cd(NO_3)_2$	1.948	-0.09302	-0.03925	5.591	-6.808	-5.439	9.7	0-100	satd	6, 40-42
$CdSO_4$	3.706	1.409	286.6	102.4	775.1	1579	34.3	0-25	satd	6, 22
$Co(NO_3)_2$	1.527	-0.2613	-0.4448	8.247	-2.591	-2.866	11.7	0-100	satd	43, 5, 6, 22, 41
C_0SO_4	1.714	-16.29	-99.52	16.32	-194.3	-973.2	17.2	5-40	satd	5, 6, 22 ~
CsBr C=Cl	1.693	1.123	0.9765	2.066	U 4 1 9 1	U 2 210	2.1	0-100	45 aatd	D 5 6
CeF	1.327	1.511	1.251	3.113	3 856	3.319 4 391	5.5 2.8	070	5atu 70	5, 6 44 45
CsI	2.051	1.521	1.193	1.306	0	0	1.8	0-100	satd	5
CsNO ₃	1.503	2.602	1.872	4.299	8.322	5.842	4.8	0-100	satd	5, 6, 46
Cs_2SO_4	3.071	4.340	7.308	11.67	17.54	32.15	5.7	0-100	satd	5, 7
$CuCl_2$	1.291	3.214	2.704	9.100	15.50	18.21	29.1	0-100	satd	47-53
$Cu(NO_3)_2$	1.470	-21.33	-68.82	0.4527	-126.0	-376.3	11.3	10 - 45	satd	5,6
CuSO ₄	1.943	9.174	6.138	39.37	83.51	53.81	36.5	0-100	satd	5, 6, 22
$DyCl_3$ $F_{\pi}Cl$	2.089	0.9711	1.376	13.32	0	0	2.0	0-100	40 50	18
FeCla	1.356	-7.891	-9.754	7.320	-51.82	-54.24	38.6	10-50	satd	5 54
FeSO4	1.992	21.20	-40.35	63.49	305.3	22.43	15.4	10-60	satd	5,6
GdCl ₃	2.538	1.149	1.386	13.06	0	0	3.4	0-100	40	18
H ₃ BO ₃	0.5092	10.35	8.291	28.20	95.20	75.11	10.6	0-100	satd	5, 22, 55
HBr	0.5998	1.300	1.061	1.263	2.160	1.647	13.5	0-70	60	5, 56
HCl	0.2046	0.9435	1.090	1.227	1.269	1.980	5.4	0-80	36	57
	0.5985	3.334	3.190	-0.05668	8.249 5 702	9.076	10.2	0-50	60 66	08 5 6 10 45
HNO.	0.9397	1 554	1.096	2 798	2 478	2 761	12.5	0-100	0-50	5, 5, 19, 40
111103	0.4984	1.092	0.1525	5.557	0.9001	-0.1289	11.3	0-100	51 - 100	3, 50
H_3PO_4	0.5574	5.606	0.2366	2.050	0.3387	-0.5906	23.7	0-80	95	7
H_2SO_4	0.7060	2.367	1.676	4.903	5.698	3.985	7.8	0-100	0-70	5, 5 9, 6 0
	0.7433	1.500	2.191	5.852	2.766	5.012	15.2	0-100	71-90	
	1.318	0.8177	-0.3053	19.91	0.6813	-1.321	17.4	0-100	91-100	5 5 00
$HgCl_2$	1.793	-22.07	-42.70	-124.1	-269.1	-839.1	8.2	5-50 0 50	sata	5-7,22
$K\Delta \alpha(CN)_2$	1.611	-0.178	-5.559	-20.25	-111.8 9.481	-4 920	5.6	0-30	10	0, 7, 22 61
KAl(SO ₄)	2.839	17.49	3.178	83.17	433.4	257.6	6.7	0-80	satd	6. 22. 41
KBr	0.9057	1.876	1.425	4.019	5.985	4.092	14.0	0-100	satd	5, 6
$KBrO_3$	1,256	1.322	1.648	2.519	0	0	3.5	0 - 100	satd	5, 22
$KTart^{a}$	1.479	-1.819	-2.369	7.129	-28.01	-30.26	25.8	0-80	satd	6, 62
K ₂ CO ₃	1.358	2.628	1.986	16.36	8.768	5.385	22.5	0-100	satd	5, 6, 22
KCIO	0.4971	0.7150	0.6506 1.974	2.376	U 7 4 9 9	U 7/011	3.6 Q /	0-100	sato	0 5 99 64 67
	0.8222	9.970	1.374	-60.10	7.400 -92.15	45.09	0.4 5.1	10-100	satd	5, 22, 64, 67
K ₆ C ₀ (CN) ₆	2.310	21.62	24.29	93.16	405.9	478.8	3.0	10 - 70	13	61.65
K ₂ CrO₄	1.706	14.52	14.71	17.18	86.86	89.26	48.2	0-100	satd	5, 6, 35
$K_2 Cr_2 O_7$	2.441	16.79	13.60	58.17	177.5	136.3	13.4	0-100	satd	5-7,66
KF	0.5364	1.208	1.317	3.790	3.121	3.399	9.4	0-60	45	5, 6, 44, 45, 91
$K_{3}Fe(CN)_{6}$	1.847	0.2936	-0.9857	13.43	-27.84	-42.71	17.2	0-100	satd	5, 6, 61, 41, 64
K_4 Fe(CN) ₆	2.616	7.400	8.012	23.51	21.60	31.37	7.6	0-100	satd	5, 6, 55, 67
	1.001	-0.5602	1.991	0.2904	-11.27	0.2190	17.2	0-100	satd	0, 6, 22 5 55 68
KHSO.	0.9981	-1.777	-17.01	3,911	-49,49	-197.7	4.9	060	satd	5-7
KI	1.256	2.125	1.515	3.022	5.980	4.090	3.6	0-100	satd	5,6
KIO ₃	1.735	-4.609	-0.4706	0	-45.37	0	3.8	0-100	satd	5, 6, 22
KMnO ₄	1.223	1.029	8.093	14.85	90.79	75.66	8.9	0-100	satd	5, 22, 41
K4Mo(CN)8	3.038	8.047	12.71	37.05	68.93	209.4	1.0	10-70	9	61
KN3 KNC	0.4896	1.020	0.8214	2.594	0	0	5.1	0-100	34	b 0 ==
KNO ₂ KNO	0.5586	2.176	1.369	2.729	4.447 9 961	2.163	39.7	0-90	sate	0,00 5,6,00
KOH	0.00003	1.477	1 000	2.323 2.383	2.304	1.500	12.2	0-100	satu	0, 0, 22 22, 69, 70
KSCN	0.5792	3.997	2.914	5,116	12.67	9,190	23.2	0-100	satd	6, 55, 67
K ₂ SO ₄	1.619	7.181	5.994	34.81	77.97	61.85	10.0	0-100	satd	5, 6, 71, 89

substance	$A \times 10^{-2}$	$-B \times 10$	$C imes 10^3$	-D	$E \times 10^2$	$-F \times 10^4$	$s_{\rm r} imes 10^2$	t	C max	ref
LaCl ₃	2.319	0.8064	1.110	13.20	0	0	2.1	0-100	satd	72
LiBr	0.6032	0.00444	0.2329	0.6188	-2.448	-1.773	17.6	0-80	satd	5, 6, 22
LiCl	0.2446	0.5505	0.8671	0.7927	1.169	1.761	9.2	0-100	satd	5, 6
	0.6957	3.280	2.913	3.409	12.42	12.88	5.9	0-100	satd	6, 73
LII LiNO-	0.9992	1.400	1.304	1 389	2,096	3.197	0.1 9.5	0-100	sata	0 5674
LiOH	0.3016	-0.4827	-0.6976	2.786	-4.538	-5.916	8.1	0-100	satu	5, 7, 75, 76
Li₂SO₄	1.008	1.058	1.329	10.07	0	0	3.9	0-100	satd	5, 6
$MgBr_2$	1.585	1.676	1.987	7.343	5.026	5.966	11.6	0-100	satd	5, 6, 22
$Mg(BrO_3)_2$	3.224	51.20	15.01	64.78	338.5	179.2	6.4	0-40	satd	5, 6
MgCl ₂	0.8099	1.887	2.315	6.029	7.449	8.305	15.7	0-100	satd	5, 6, 22, 89
Mg(CIO ₄) ₂ MgI	1.694	3.138	1.278	9.611	8.639	0 772	2.4	0-100	satd	41
Mg_{2} $Mg(NO_{2})$	2.307	3.178	2.723	8 257	-7.177	-16.99	4.7	0-100	30	0, 0, 22 5 6 99 18
MgSO ₄	1.437	6.531	5.263	23.28	39.11	27.83	26.3	0-100	satd	5, 22, 77-79
MnCl	1.022	-4.966	-13.07	3.659	-16.31	-47.74	25.9	0-70	satd	5, 54, 80
$MnSO_4$	1.551	1.258	-0.5341	13.64	6.703	-3.531	19.3	0-100	satd	5, 55, 81
NH3	-0.0688	0.1989	0.09711	-0.1843	-0.4392	0.01126	12.7	0-75	40	5, 59
$NH_4Al(SO_4)_2$	2.111	-3.694	-5.642	15.42	-34.35	-42.53	6.5	0-100	satd	6, 19, 41
	0.2328	2.948	2.644	4.013	11.01	10.79	6.7	0-100	40	5, 41 5, 41
NH ₄ Ox NH ₄ Ox	0.0097	1.577	1 553	2 556	5 670	5 082	39	0-100	satu	5 99
NH ₄ ClO ₄	0.6375	5.744	13.22	2.497	10.09	46.34	10.0	0-50	satd	5, 6
NH ₄ Fe(SO ₄) ₂	2.483	2.470	1.462	39.48	14.73	0	2.9	0-100	satd	19
NH ₄ H ₂ PO ₄	0.7666	3.191	2.382	13.39	23.41	15.34	15.5	0-100	satd	22, 55, 68, 62, 82
NH4HSO4	0.7754	2.064	2.135	11.05	7.436	7.135	3.1	0-100	50	5
NH₄I	0.963	-0.8591	-3.218	-0.4009	-19.70	-30.20	21.8	10-60	50	5, 85
NH₄NO ₃	0.3614	1.446	1.009	1.898	2.918	1.870	10.6	0-100	satd	83, 84
$(\mathrm{NH}_4)_2\mathrm{Ni}(\mathrm{SO}_4)_2$	2.917	18.18	18.07	125.4	378.4	362.5	6.1	10-80	7	55, 85, 86
$(INH_4)_2 SU_4$ No B O	0.8878	2.208	2.241	13.43	8.497 517 9	7.462	0.3 11 4	0-100	sata	5, 0, 22 5, 99, 55
NaBr	2.077	19.73	1 353	192.1 9 847	A 791	3 413	5.0	0-100	satd	5 G
NaBrOa	1 231	2.778	1.000	5 168	12.05	7 415	49	0-100	satu	5, 22
NaAc ^a	0.4364	0.6740	0.6482	2.113	-0.9843	0	4.9	0-100	satd	5.6
NaTart ^a	1.466	3.657	2.732	15.98	15.10	10.76	4.0	0-100	32	5, 6
NaCl	0.4485	0.9634	0.6136	2.712	1.009	0	4.2	0-100	satd	5
$NaClO_3$	0.7725	3.607	4.286	4.040	10.16	12.59	10.1	0-90	satd	5-7, 22
NaClO ₄	0.8462	3.788	3.966	3.025	9.968	11.13	19.1	0-100	satd	5, 6, 87
Na_2CO_3	1.241	6.213	6.124	18.36	31.78	36.72	16.8	0-100	satd	5, 6, 22
NaUx ^e Na C-O	1.178	5.450	5.997	7.073	45.83	77.51	3.6	0-100	satd	5,7
Na_2CIO_4 Na_Cr.O.	2 029	13 15	10.16	22 81	59.66	45.67	22.4	0-100	satu	5, 0, 00, 00 6, 66
NaF	0.4940	2.985	3.365	4.752	16.22	18.72	6.1	0-70	satu	5, 7, 89-92
NaForm ^a	0.4520	0	-1.950	2.761	0	-3.695	3.8	0-60	satd	5-7
NaH ₂ PO ₄	0.7649	-5.207	-6.142	-1.086	-26.60	-24.97	51.8	0-100	satd	62, 93, 94
Na ₂ HPO ₄	1.255	-7.321	-5.656	-2.343	-52.46	-41.66	14.5	0–100	satd	7, 41, 93
$Na_5P_3O_7$	3.505	3.627	2.354	53.23	1.838	1.210	6.1	20-80	12	85
NaHSO ₄	1.022	3.093	3.084	9.324	0	0	3.5	0-50	22	5
Nal NalO	1.196	2.120	1.396	2.502	5.095	3.346	3.9	0-100	sata	5, 5 5, 7, 99, 05
NaKTart ^a	1.785	2 323	29.84	13 45	4 364	2.506	4 2	0-80	eatd	5
NaMnO	1.096	0.4598	-3.979	5.206	-18.29	61.06	8.7	0-40	26	96
Na ₂ MoO ₄	1.923	6.168	5.791	-21.30	47.48	42.86	7.1	15-100	satd	5, 41
NaN ₃	0.4116	1.560	1.025	1.188	2.594	1.536	4.2	0-100	30	5
$NaNO_2$	0.5142	3.362	4.079	3.242	7.155	9.671	11.2	0-80	satd	5–7,97
NaNO ₃	0.6298	2.382	1.520	4.138	6.626	4.208	7.4	0-100	satd	5, 6, 22
NaOH Na DO	0.4916	0.9064	0.6308	4.907	1.633	1.041	13.3	0-100	satd	5, 98-100
Na_3PO_4	1.473	-13.06	-10.43	-11.76	111.3	-86.91	6.5	0-100	satd	5; 41 5 7 41
$Na_4P_2O_7$ Na-S	0.8653	9.731	-40.69	9 759	203.8	-5 370	4.4	0-100	sata	5, 7, 41 5-7
NaSCN	0.4840	2.752	1.735	3.530	7.631	5.247	4.7	0-70	satd	6. 87
Na ₂ SO ₃	1.651	22.90	22.80	45.90	177.1	176.2	18.1	0-100	satd	5-7, 41
Na_2SO_4	1.412	4.535	3.766	17.51	21.11	17.73	4.8	0-100	satd	5, 6, 22, 89
$N_2S_2O_3$	1.409	3.063	2.082	16.05	12.45	8.138	5.5	0-100	satd	6, 41
Na_2WO_4	2.554	-2.885	-2.066	1.756	-26.65	-21.07	16.9	0-100	satd	5, 6, 41
NdCl ₃	2.446	1.140	1.211	14.57	0	0	3.0	0-100	satd	72
N(NO)	1.187	-5.607	-5.650	2.635	-37.42	-34.53	23.2	0-100	satd	5-7, 22, 101
NiSO	1.027 1.779	-12.09 9.979	-40.40 0 9337	4.919 99 04	-01.11 6 Å76	-200.0 -5 0rg	17.2 39.7	0-100	sato	0, 0, 40 5-7 29
$Ph(NO_{2})$	2.649	-9.459	-6.758	-19.60	-139.3	-91.02	28.3	0-100	satu	5-7, 102
PrCla	2.399	1.066	1.180	14.40	0	0	3.0	0-100	satd	72
RbBr	1.303	1.609	1.190	2.820	2.544	Ō	3.7	0-80	satd	5
RbF	0.9859	1.589	1.940	3.972	4.153	4.878	2.6	0-70	55	45
RbCl	0.9251	1.051	0.3060	3.330	2.809	0	4.3	0-100	satd	5
RbI	1.665	0.8912	-0.7021	2.708	-3.551	-12.94	14.7	0-80	satd	5
RDINU3 Rh.SO	1.044	1.294	1.640	0.7562	-0.1728 37 09	2.592	21.8	0-100	satd	0 5
1102004	2.024	0.407	0.200	11.44	01.00	41.71	0.0	0-100	savu	0

Table I (Continued)

Table I (Continued)

substance	$A \times 10^{-2}$	$-B \times 10$	$C \times 10^3$	-D	$E \times 10^2$	$-F \times 10^4$	$s_{\rm r} imes 10^2$	t	Cmax	ref
SmCl ₃	2.501	1.309	1.351	13.99	0	0	3.5	0-100	satd	18
\mathbf{SrBr}_2	2.200	2.770	2.119	8.825	7.717	4.571	7.8	0-100	satd	5, 6, 22
$Sr(BrO_3)_2$	2.853	-2.778	0.2361	5.434	-24.18	-11.06	10.9	0 - 100	satd	5, 22
$Sr(Ac)_2^{a}$	-1.134	-236.4	-521.3	-82.93	-780.2	-1426	2.5	20 - 35	26	5, 6
\mathbf{SrCl}_2	1.536	4.157	3.586	14.63	23.11	18.94	8.1	0 - 100	satd	5, 6, 22
SrI_2	3.012	6.103	3.874	11.72	28.70	17.04	5.1	0 - 100	satd	5, 6
$Sr(NO_3)_2$	1.800	4.794	3.631	12.14	18.35	14.25	4.8	0-100	satd	5, 6
$TlNO_3$	2.470	15.82	13.66	-3.533	58.72	67.73	17.1	0-100	satd	5, 6, 103
Tl_2SO_4	5.062	-4.033	-6.553	195.3	-78.83	-126.7	4.7	0 - 100	satd	5
$UO_2(NO_3)_2$	3.182	0.6041	2.092	-5.374	-16.83	-1.337	18.2	0 - 100	satd	104, 105
UO_2SO_4	3.189	-21.21	-36.17	13.28	-215.6	-337.6	40.6	10 - 95	36	6
$YbCl_3$	2.737	1.041	1.352	13.88	0	0	2.8	0 - 100	50	18
$ZnBr_2$	1.990	2.767	1.040	9.900	7.184	1.730	20.9	0 - 100	satd	5,6
ZnCl_2	1.211	3.632	1.954	8.380	12.00	6.587	24.3	0-100	satd	5-7
ZnI_2	2.762	3.293	1.959	10.82	9.385	6.576	20.8	0-100	satd	5, 22
$Zn(NO_3)_2$	1.687	5.047	4.492	13.56	28.31	26.11	8.3	0-80	50	5, 6, 85, 106
ZnSO₄	1.758	3.895	3.402	15.83	19.79	16.43	8.0	0-100	satd	5, 6, 22

^aAc = acetate, Form = formate, Ox = oxalate, Tart = tartrate; c_{max} in wt % or up to a saturated solution (satd).

Table II.	Constants of Eq 3 Expressing	he Density of Aqueous	s Solutions of 139	Substances as a l	Function of Solution
Concentra	tion at a Constant Temperatu	е			

substance	<i>t</i> , °C	$G \times 10^{-2}$	$-H \times 10^{-1}$	c _{max} , wt %	$s_r \times 10^2$	ref
AgF	18	1.217	0.1421	62	50.0	5
AlBr ₂	20	2.086	1.128	22	13.7	6
AlCla	0	1.144	1.278	30	4.0	6
	15	9.642	0.5767	31	1.1	6
	25	1.183	0.8182	31	2.8	8
$Ba(Ac)a^{a}$	17.5	1 786	0.8983	40	29.9	ő
$B_{\alpha}(C[0])$	25	2 621	0.8486	60	0.6	e e
$Ba(CiO_4)_2$ Ba(Form) ⁴	18	1 888	1.044	20	0.0 9.1	5
Ba(OH)	80	1.596	1.077	22	49.0	e e
$B_{\alpha}(SCN)$	25	1.807	0.4414	50	42.0	6
$B_{a}(3CN)_{2}$	20	0.5961	0.4414	30	12.0	5.0
$Be(I_2)$	20	0.0001	0.0002	00 00	12.0	5, 9
$Be(IO_3)_2$	10	0.000	-0.07635	22	20.0	e F
$Be(NO_3)_2$	18	0.6092	0.1028	30	0.6	5
BesU ₄	25	0.9893	0.8743	28	2.1	5, 6, 10
$Ca(Ac)_2^{\circ}$	17.5	0.8711	0.9909	25	2.3	6
$Ca(CIO_3)_2$	18	1.582	0.9327	64	4.2	5
$Ca(ClO_4)_2$	25	1.720	1.047	37	5.4	11
$CaCr_2O_7$	30	2.029	0.9380	54	5.6	6
$Ca_2Fe(CN)_6$	0	2.604	3.758	32	2.7	5
$Cd(ClO_3)_2$	18	2.240	0.6579	40	1.3	5
CeCl ₃	25	2.305	1.105	44	10.2	6
$Ce(NO_3)_3$	15	3.256	2.256	24	2.5	6
$CoBr_2$	18	1.939	0.4898	30	0.4	ð
$CoCl_2$	20	1.179	0.4724	20	0.9	12, 63
_	25	1.183	0.5939	34	0.9	
$Co(ClO_3)_2$	18	1.787	0.7321	40	0.8	5
CsForm ^a	50.5	1.304	0.0887	75	22.6	14
CsOH	25	1.303	0.0900	17	1.5	15
$CuBr_2$	25	2.112	0.8487	44	1.6	16
$Cu(ClO_3)_2$	18	1.888	0.8423	30	0.9	5
$Cu(ClO_4)_2$	20	2.137	1.365	58	14.1	6
$Dy(ClO_4)_3$	25	3.708	1.283	67	0.9	17
$Er(ClO_4)_3$	25	3.795	1.442	68	2.2	17
EuCl_3	25	2.465	1.272	48	2.5	18
$Eu(ClO_4)_3$	25	3.639	1.495	67	4.1	17
$FeBr_2$	18	1.894	0.4664	35	1.5	5
$FeCl_2$	15.5	1.137	0.4805	37	7.8	5
$Fe(ClO_4)_3$	15	3.272	3.151	50	0.8	6
$Fe(NO_3)_2$	15	1.429	0.5318	44	1.5	5, 6
	20	1.470	0.8229	45	0.9	
$Fe(NO_3)_3$	18	1.896	0.7949	25	1.4	5
$Fe_2(SO_4)_3$	17.5	3.341	21.82	60	25.1	19
	25	3.743	29.68	15	18.3	7
$Gd(ClO_4)_3$	25	3.684	1.442	67	4.3	17
H_3AsO_4	15	9.112	0.0675	70	4.7	5
	25	9.298	0.1830	14	1.2	
H_2CrO_4	25	0.7942	0.5619	44	17.4	6
$H_2Cr_2O_7$	0	1.420	0.4853	57	5.5	6
HF	20	0.1081	0.09743	44	28.8	19
HIO_3	0	1.565	0.7194	27	4.7	6
	25	1.486	0.3374	14	3.9	
	17	1.688	0.04977	32	2.8	19
$H_2S_2O_8$	14	1.101	0.003379	35	5.6	19
H_2SeO_4	25	1.111	0.4238	97	46.6	19

substance	<i>t</i> , °C	$G \times 10^{-2}$	$-H \times 10^{-1}$	c _{max} , wt %	$s_r \times 10^2$	ref
$Hg(ClO_4)_2$	25	1.343	6.388	81	16.5	6
$HoCl_3$	25	2.598	1.305	50	1.4	20
Ho(ClO ₄) ₃	25	3.762	1.433	68	2.2	17
InBr ₃	18	1.862	0.4001	32	1.8	5
InCl ₃	25	1.700	0.3083	30	9.6	21
K ₂ CdI ₄	18	5.360	1.281	45	1.6	5
KAc^{a}	18	0.5156	0.3510	60	3.8	5, 22
	25	0.5101	0.3385	60	3.8	
KCitr ^a	18	2.127	2.274	34	0.9	5
	25	2.126	2.354	60	2.2	
KOxª	18	1.293	1.438	21	7.5	5, 6
	25	1.266	1.120	14	0.7	
KCN	20	0.3637	0.3068	35	7.5	5, 59
KCNO	15	0.5085	0.3484	34	1.7	5
K_2CS_3	15	1.293	1.221	68	18.7	6
$KFe(SO_4)_2$	15	2.483	1.358	20	1.9	5
KForm ^a	21	0.5249	0.3987	28	9.5	6
K ₂ HPO ₄	18	1.541	1.528	27	7.4	6
KHS	18	0.4499	0.3408	50	1.9	5
$K_2M_0O_4$	15	1.665	0.8992	16	0.9	5
K ₃ PO ₄	25	1.116	1.839	23	12.2	23
K ₂ S	18	0.9401	0.8344	45	8.4	19
K ₂ SO ₃	15	1.331	1.019	26	2.2	5
$K_2S_2O_7$	15	1.989	2.471	22	1.3	5
K₂SeO₄	15	1.845	1.489	14	0.3	5
	20	1.829	1.267	50	0.6	10
K ₂ SiO ₃	20	1.439	1.304	28	2.7	19
K ₂ WO ₄	15	2.787	0.9494	18	0.4	5
$La(CIO_4)_3$	25	3.497	1.814	67	3.3	17
$La(NO_3)_3$	18	2.960	2.020	32	1.1	5
LiAc ^a	18	0.2587	0.08703	24	0.3	5
LiClO ₃	25	0.5583	0.07032	75	7.5	5,6
LICNS	18	0.2576	0.09595	18	0.3	5
L ₁₂ CrO ₄	18	1.144	0.9888	22	0.4	5
$L_{12}Cr_{2}O_{7}$	18	1.603	0.6688	20	0.7	5, 6
	30	1.454	0.3448	60	4.0	- 0
LiForm"	18	0.2901	0.2367	27	4.1	5, 6
	18	1.626	0.7212	44	13.4	0
	25	2.744	1.377	53	2.2	20
	25	3.904	1.482	68	2.6	17
$Mg(Ac)_2^{2}$	15	0.0008	0.3506	00 (2	8.0	0, 1
$\mathbf{M}_{-}(\mathbf{O} \mathbf{O})$	20	0.8617	0.8502	43	0.1	F
	10	1.470	1.149	00	1.4	0
MgCrO ₄	10	1.421	1.100	40	1.0	10
$MnBr_2$	10	1.007	0.4000	32	0.0	19
$Mn(AC)_2^-$	20	0.0027	0.3039	55	2.9 5 A	5
$NH B_{P}$	19	0.5528	0.1027	34	11	7
11114101	25	0.5320	0.1040	40	0.9	'
(NH.).CO.	15	0.3652	0.3932	40	61	19
$(NH_{4})_{2} Cr_{2}O_{2}$	10	1.392	0.2687	20	0.5	57
(1114)201207	23	1 439	0.5519	26	11.8	0, 1
NHF	18	0.2144	0.3659	14	26	56
NH Fe(SO)	15	2.380	3.764	40	10.1	19
NH Form ^a	15	0.1951	0.2015	55	3.6	5
111141 01111	25	0.1910	0.1940	55	2.7	·
NHLHF	25	0.2510	0.4214	30	21.3	24
(NH ₄) ₂ M ₀ O ₄	20	1.076	1.567	30	8.2	6
NHLOCI	17	0.3186	0.1755	40	2.8	6. 25
	25	0.3242	0.2846	22	2.7	-,
NH.SCN	18	0.1792	0.06591	28	0.4	5
	25	0.1634	0.02594	58	5.4	-
(NH4)2SiF4	20	0.7899	0.1992	17	0.6	6
Na ₂ AsO ₄	17	2.331	2.714	12	0.9	5
NaBenza	25	0.6117	0.4306	36	0.7	5
NaClO ₂	20	0.5140	0.05241	33	14.2	7
Na₄Fe(CN) ₆	20	2.218	1.493	15	1.0	63
NaH ₂ AsO ₄	25	1.320	0.8006	14	0.8	5
Na₂HAsO₄	14	1.674	0.2870	18	8.0	6
Na ₂ HPO ₃	15	0.9160	0.9022	60	12.7	6
	25	0.8916	0.8060	60	21.0	
$NaHSO_3$	15	1.254	2.492	38	12.5	19
Na_2SeO_4	15	1.730	1.432	14	0.8	6
Na_2SiO_3	18	1.383	1.416	26	3.0	19
Na_2SnO_3	20	1.873	1.721	20	2.4	19
Nd(ClO ₄) ₃	25	3.601	1.839	67	4.1	17_{-}
$NiBr_2$	18	1.999	0.5654	30	1.1	5
	25	1.947	0.3823	44	2.2	26

Table II (Continued)

substance	<i>t</i> , °C	$G \times 10^{-2}$	$-H \times 10^{-1}$	c_{\max} , wt %	$s_{\rm r} \times 10^2$	ref
Ni(ClO ₃) ₂	18	1.844	0.7610	30	1.3	5
$Pb(Ac)_2^{a}$	14	2.403	0.7703	25	1.5	6
$\Pr(ClO_4)_3$	25	3.564	1.867	67	4.1	17
Rb_2Tart^a	20	2.123	1.138	64	7.2	6
RbOH	18	0.9807	0.4443	28	2.1	5
$Sm(ClO_4)_3$	25	3.652	1.670	67	5.0	17
$SnCl_2$	15	1.434	0.3705	70	11.8	5
$SnCl_4$	15	1.963	0.5578	70	10.4	5
$Sr(ClO_3)_2$	18	2.044	0.9238	36	3.0	5, 6
$Sr(ClO_4)_2$	25	2.192	0.9658	60	6.0	6
$Sr_2Fe(CN)_6$		3.509	3.566	20	1.1	5
TbCl_3	25	2.519	1.238	48	0.8	20
$Tb(ClO_4)_3$	25	3.677	1.328	67	2.1	17
$ThCl_4$	18	3.556	1.766	28	1.5	5
$Th(NO_3)_4$	15	4.175	1.181	18	1.0	5
$\mathbf{Tl}\mathbf{F}$	18	2.176	0.7726	30	3.3	5
TIOH	15	2.105	0.5925	26	22.4	6
TmCl ₃	25	2.664	1.345	51	2.2	20
$Tm(ClO_4)_3$	25	3.822	1.443	68	1.8	17
UO_2Cl_2	25	2.962	0.5491	57	0.7	6
UO_2F_2	25	2.812	0.5722	61	2.1	6
YCl ₃	0	1.887	1.539	41	1.0	20
	25	1.827	1.285	43	1.3	
$Yb(ClO_4)_3$	25	3.912	1.638	68	2.4	17
$Zn(BrO_3)_2$	18	2.792	1.041	35	1.9	5
$Zn(Ac)_2^{a}$	23.5	1.396	2.398	22	0.4	6
$Zn(ClO_3)_2$	18	1.814	0.4548	65	5.9	5

^aAc = acetate, Form = formate, Ox = oxalate, Tart = tartrate, Citr = citrate, Benz = benzoate.

The resulting "best" estimates of densities for every system treated have been tabulated in ref 3 for solution concentration, and where possible also temperature, increasing in specific increments. The present paper summarizes the constants of the correlation expression for 306 inorganic substances.

Processing of Experimental Data

The density of aqueous solutions as a function of their temperature and concentration can be expressed as (3)

$$\rho = \rho_{w} + Ac + Bct + Cct^{2} + Dc^{3/2} + Ec^{3/2}t + Fc^{3/2}t^{2}$$
(1)

where A through F are adjustable constants, c is the solute concentration in mol·dm⁻³, t is the temperature in °C, and ρ is the density of solution in kg·m⁻³. Equation 1, which is theoretically substantiated (see ref 3), can be used for evaluating the densities of ternary aqueous solutions, if the constants of the respective binary solutions are known (4).

The density of water, ρ_w , is calculated according to the empirical equation

$$\rho_{\rm w} = 999.65 + 2.0438 \times 10^{-1}t - 6.174 \times 10^{-2}t^{3/2}$$
 (2)

which results from the correlation of the appropriate data given in ref 5

The density of aqueous solutions as a function of concentration at constant temperature can be expressed as (3)

$$\rho = \rho_w + Gc + Hc^{3/2}$$
(3)

where G and H are adjustable constants.

The goodness of fit of eq 1 and 3 to experimental data is given by the relative standard deviation

$$s_r = 100(\sum (\rho_{\text{expt}} - \rho_{\text{calcd}})^2 / (N - i))^{-1/2} / \bar{\rho}$$
 (4)

where $\rho_{\rm expt}$ and $\rho_{\rm calcd}$ represent the experimental and calculated value of the solution density, respectively, $\bar{\rho}$ is the average density, and N and i are the number of experimental data and the number of the correlation equation constants, respectively.

Results

The constants of eq 1 for binary aqueous solutions of 167 substances, the relative standard deviation, the ranges of temperature in °C and concentration in wt % at which the correlation is applicable, and the references to the source of used experimental data are given in Table I.

For several systems the number of density values calculated from eq 1 deviating from the respective experimental data by more than 1 kg.m⁻³ did not exceed 5% of the total number of experimental data. In this case, the constant in eq 1 of the least statistical significance was dropped and the correlation was repeated. This procedure was continued until omitting the next constant increased the number of deviating points above 5% of their total number.

The constants of eq 3 are given in Table II for 139 substances. The relative standard deviation, the temperature at which the correlation holds, the concentration limit of its validity, and the reference to the source of experimental data are also indicated.

Literature Cited

- (1) Lobo, V. M. M. Electrolyte Solutions; University of Coimbra: Coimbra, Portugal, 1984; Vol. I.
- (2) Lobo, V. M. M.; Quaresma, J. L. Electrolyte Solutions; University of Colmbra: Colmbra, Portugal, 1981; Vol. II. (3) Söhnel, O.; Novotný P. Densitles of Aqueous Solutions of Inorganic
- Substances : Phys. Science Data 22; Elsevier: Amsterdam,
- (4) Söhnel, O.; Novotný, P.; Šolc, Z. Collect. Czech. Chem. Commun. 1984. 49. 1965 (5) International Critical Tables; McGraw-Hill: New York, 1928; Vol.
- III.
- (6) Timmermas, J. The Physico-chemical Constants of Binary Systems in Concentrated Solutions; Interscience: New York, 1960; Vol 3, 4. (7) Gmelin's Handbuch der Anorganischen Chemie; Springer Verlag:
- Berlin.
- (8) Mason, C. M. J. Am. Chem. Soc. 1938, 60, 1638.
 (9) Sindwick, N. V.; Lewis, N. B. J. Chem. Soc. 1926, 1287.
 (10) Kuschel, F.; Seldel, J. Z. Phys. Chem. (Leipzig) 1981, 262, 967.
- Lumme, P. Acta Chem. Scand. 1970, 24, 1727 (11)
- (12) Phang, S. Aust. J. Chem. 1980, 33, 641.
 (13) Hill, A. E.; Moskowitz, S. J. Am. Chem. Soc. 1931, 53, 941.
- Rice, M. J.; Kraus, C. A. Proc. Nat. Acad. Sci. 1953, 39, 802. (14)
- (15) Harned, H. S.; Schupp, O. E. J. Am. Chem. Soc. 1930, 52, 3886.

- (16) Michailin, B. V.; Vorobev, A. F.; Vasilev, V. A. Zh. Fiz. Khim. 1982, 56, 1937
- (17) Spedding, F. H.; Shiers, L. E.; Brown, M. A.; Derer, J. L.; Swanson, D. L.; Habenschuss, A. J. Chem. Eng. Data 1975, 20, 81.
 (18) Habenschuss, A.; Spedding, F. H. J. Chem. Eng. Data 1978, 21,
- 95
- (19) Freier, R. K. Aqueous Solutions: W. de Gruvter: Berlin, 1976; Vol.
- (20) Spedding, F. H.; Shiers, L. E.; Brown, M. A.; Derer, J. L.; Swanson,
- (20) Speculity, F. H., Shiers, L. E., Brown, M. A., Derer, J. L.; Swahson, D. L.; Habenschuss, A. J. Chem. Eng. Data 1975, 20, 72.
 (21) Kartzmark, E. M. J. Chem. Eng. Data 1982, 27, 38.
 (22) Linke, W. F. Solubilities of Inorganic and Metal—Organic Compounds; van Nostrand: New York, 1958.
- Drucker, C. Arkiv. Kem. Min. Geol. 1946, 22A (21), 17.
- (24) Bendaoud, S.; Thourey, J.; Perachon, G. J. Fluorine Chem. 1984, 25.395. (25) Morris, K. B.; Nelson, J. J.; Nizko, H. S. J. Chem. Eng. Data 1985,
- 10. 120. (26) Vorobev, A. F.; Vasilev, V. A.; Michailin, B. V.; Malkov, I. V. Zh. Fiz.
- Khim. 1979, 53, 2493.
 (27) Campbell, A. N.; Singh, K. P. Can. J. Chem. 1959, 37, 1959.
 (28) Haase, R.; Lenhert, G.; Janse, H.-J. Z. Phys. Chem. (Frankfurt/
- (28) Haase, R.; Lenhert, G.; Janse, H.-J. Z. Phys. Chem. (Frankfurt / Main) 1969, 42, 32.
 (29) Klochko, M. A.; Ururchanov, M. M. Izv, Sekt. Fiz. Khim. Anal. Akad. Nauk SSSR 1953, 22, 298.
 (30) Mazzucchelli, A.; Rossi, A. Gazz. Chim. Ital. 1927, 57, 383.
 (31) Hantzch, A.; Düringen, F. Z. Phys. Chem. 1928, A136, 1.
 (32) Högnäs, H. An. Acad. Sci. Fennicae 1969, 145, 1.
 (33) Silva, J. W.; Chenevey, J. E. Ind. Eng. Chem. 1945, 37, 1017.
 (34) Gupples, H. L. J. Phys. Chem. 1946, 50, 257.
 (35) Rodnanskii, I. M.; Korobkov, V. I.; Galinker, I. S. Zh. Fiz. Khim. 1962, 36, 216.

- 1962, 36, 2216. (36) Baranowski, B.; Jacob, H. P.; Sarnowski, M. Z. Phys. Chem. 1961,
- 216.215.
- (37) Ewing, W. W.; Mikovsky, R. J. J. Am. Chem. Soc. 1950, 72, 1390.

- (37) Ewing, W. W.; Mikovsky, H. J. J. Am. Chem. Soc. 1950, 72, 1390.
 (38) Pearce, J. N.; Blackman, L. E. J. Am. Chem. Soc. 1935, 57, 24.
 (39) Hering, H. Ann. Chim. 1938, 5, 483.
 (40) Ewing, W. W.; Herty, Ch. H. J. Phys. Chem. 1953, 57, 245.
 (41) Söhnel, O.; Novotný, P.; Šolc, Z. J. Chem. Eng. Data 1964, 29, 379
- (42) Isono, T. J. Chem. Eng. Data 1964, 29, 45.
- (43) Spitzer, J. J.; Olofsson, I. V.; Singh, P. P.; Hepler, L. G. J. Chem. (4) Spitzer, S. J., Olosson, I. V., Singi, P. F., Hepler, L. G. J. Chem. Thermodyn. 1979, 11, 233.
 (44) Lengyel, S. Magy. Kem. Foly. 1983, 69, 117.
 (45) Tamás, J. Acta Chim. Acad. Sci. Hung. 1964, 40, 117.
 (46) Berchlesi, M. A.; Berchlesi, G.; Lobia, G. C. J. Chem. Eng. Data

- 1974, 19, 326.
- (47) Charpy, G. Ann. Chim. Phys. 1893, 5, 29.
 (48) Jones, H. C.; Getman, F. H. J. Am. Chem. Soc. 1904, 31, 303.
 (49) Jones, H. C.; Getman, F. H. J. Am. Chem. Soc. 1904, 32, 308, 398.

- (50) Jones, H. C.; Getman, F. H. Z. Phys. Chem. 1904, A49, 385.
 (51) Jones, H. C.; Bassett, H. P. J. Am. Chem. Soc. 1905, 33, 534.
 (52) Jones, H. C.; Bassett, H. P. J. Am. Chem. Soc. 1905, 34, 290.
 (53) Berthier, P.; Courty, C. Compt. Rend. Acad. Scl. 1952, 234, 604,
- 2525.
- (54) Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoreti-
- cal Chemistry; Longmans: London, 1957. (55) Söhnel, O.; Novotný, P.; Wurzelová, J. Chem. Listy 1962, 76, 979. (56) Haase, R.; Sauermann, P.-F.; Dücker, K.-H. Z. Phys. Chem. (Frank-
- (50) Hasso, H., Sadermann, P.F., Ducker, K.H. Z. Phys. Chem. (Prank-furt/Main) 1965, 47, 224.
 (57) Akerlöf, G.; Teare, J. W. J. Am. Chem. Soc. 1938, 60, 1226.
 (58) Clark, L. H.; Putnam, G. L. J. Am. Chem. Soc. 1949, 71, 3445.
 (59) D'Ans/Lax; Taschenbuch für Chemiker und Physiker; Springer: Ber-interaction.

- lin 1967; Band I.
- (60) Domke, J.; Bein, W. Z. Anorg. Chem. 1905, 43, 125
- (61) Curthoys, G.; Mathieson, J. G. J. Chem. Eng. Data 1977, 22, 225.

- (62) Mýl, J.; Solc, Z.; Kvapil, J. Sci. Pap. Univ. Chem. Technol. Pardubice 1983, No. 1, 89. (63) Weast, R. C. Handbook of Chemistry and Physics, 62nd ed.; CRC
- Press: Boca Raton, FL, 1981.
 (64) Jones, G.; Ray, W. A. J. Am. Chem. Soc. 1941, 63, 288.
 (65) Malatesta, F.; Zambonini, R. J. Chem. Soc. Faraday Trans. 1 1980,
- 76, 2510.
- (66) Kearley, R. A. J. Chem. Eng. Data 1964, 9, 548.
 (67) Jones, G.; Ray, W. A. J. Am. Chem. Soc. 1941, 63, 290.

- (6) Julies, G., Ray, W. A. J. Am. Chem. Soc. 1941, 53, 250.
 (68) Mullin, J. W.; Amatavivadhana, A. J. Appl. Chem. 1967, 17, 151.
 (69) Akerlöf, G.; Bender, P. J. Am. Chem. Soc. 1941, 63, 1085.
 (70) Than, M. K.; Gubbins, K. E.; Walker, R. D. J. Chem. Eng. Data 1987, 12, 525.
- Ishi, T.; Fujita, S. J. Chem. Eng. Data. 1978, 23, 19.
- (72) Gildseth, W. M.; Habenschuss, A.; Spedding, F. H. J. Chem. Eng. Data 1975, 20, 292.
- (73) Haase, P.; Dücker, K. U. Z. Phys. Chem. (Frankfurt/Main) 1965, 46, 140.
- (74) Puchkov, L. V.; Matashkin, V. G.; Matveeva, R. P. Zh. Prikl. Khim. (17) Fubinov, L. V., Matasikin, V. G., Mateseva, H. F. 21. Finit. Kimit. 1979, 52, 1167.
 (75) Hitchcock, L. B. Ind. Eng. Chem. 1937, 29, 302.
 (76) Mikhailov, I. G.; Zhau, F. Vestn. LGU 1960, 15(16), 22.
 (77) Fabuss, B. M.; Korosi, A.; Huq, A. K. M. S. J. Chem. Eng. Data
- 1986, 11, 325.
- /78\
- Korosi, A.; Fabuss, B. M. J. Chem. Eng. Data 1968, 13, 548. Chen, Ch-T.; Chen, J. H.; Millero, F. J. J. Chem. Eng. Data 1960, (79)
- 25.307

- (80) Phang, S. Aust. J. Chem. 1980, 33, 413.
 (81) Deckwer, W. D. J. Chem. Eng. Data 1980, 25, 75.
 (82) Chomjakow, K.; Jaworowskaja, S.; Schirikich, P. Z. Phys. Chem. 1933, A167, 35.
- (83) Ranken, C.; Taylor, W. W. Trans. R. Soc. Edinburgh 1906, 45(15),
- (84) Getman, F. M. J. Am. Chem. Soc. 1908, 30, 721, 1077.
 (85) Söhnel, O.; Novotný, P.; Šolc, Z. Sci. Pap. Univ. Technol. Pardubice 1985, 47, 43.
- (86) Mullin, J. W.; Osman, M. M. J. Chem. Eng. Data 1967, 12, 516.
- (67) Miller, M. L.; Doran, M. J. Phys. Chem. 1956, 60, 186.
 (88) Kelly, W. R.; Morgan, T. R. J. Chem. Eng. Data 1965, 10, 290.
 (89) Millero, F. J.; Knox, J. H. J. Chem. Eng. Data 1973, 18, 407.
 (90) Payne, J. H. J. Am. Chem. Soc. 1937, 59, 947.

- (91) Desnoyers, J. E.; Perron, A. G.; Jolicoeur, C. J. Phys. Chem. 1969, 73, 3346.
- (92) Millero, F. J. J. Phys. Chem. 1967, 71, 4567
- Khara, P. L. Trans. Faraday Soc. 1962, 58, 359. (93)
- (94) Masom, C. M. J. Am. Chem. Soc. 1949, 71, 2387.
 (95) Bonner, O.; Gable, R. W. J. Chem. Eng. Data 1970, 15, 499.
 (96) White, J. C.; Miller, R. R. J. Am. Chem. Soc. 1953, 75, 3282.
 (97) Günther, F.; Perschke, W. J. Chem. Soc. 1934, 100.

- (98) Akerlöf, G.; Kegeles, G. J. Am. Chem. Soc. 1939, 61, 1027. (99)
- Krings, W. Z. Anorg. Chem. 1946, 255, 294.
- (100) Hayward, A. M.; Permann, E. P. *Trans. Faraday Soc.* 1931, *27*, 59.
 (101) Stokes, R. H.; Phang, S.; Mills, R. J. Solution Chem. 1979, *8*, 489.
 (102) Chernenkaya, E. I.; Kuznetova, O. M. Zh. Prikl. Khim. 1972, 52,
- 1255.
- (103) Masterton, W. L.; Welles, H.; Knox, J. H.; Millero, F. J. J. Solution Chem. 1974, 3, 91.
 (104) Grant, W. E.; Darch, W. J.; Bowden, S. J.; Jones, W. I. J. Phys. Chem. 1948, 52, 1227.
- (105) Kapustinskii, A. F.; Lipilina, I. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1958 649
- (106) Jain, S. K. J. Chem. Eng. Data 1976, 23, 170.

Received for review May 21, 1986. Accepted August 3, 1987.

Excess Molar Volumes of Binary Mixtures of Diols and Water

G. Czechowski,* B. Żywucki, and J. Jadżyn

Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 60-179 Poznań, Poland

The excess molar volumes of binary mixtures of water and 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,3-propanediol, and 1,5-pentanediol have been determined at 293.15, 303.15, and 313.15 K.

Introduction

In a previous paper (1) we reported the excess molar volumes V_m^{E} measured in binary mixtures of dipolar compounds with nonpolar solvents. Here we report the results of mea-

		μ	
diol	T = 293.15 K	T = 303.15 K	T = 313.15 K
1,2-Bu(OH) ₂	1.003 47	0.995 44	0.987 87
$1,3-Bu(OH)_2$	1.00579	0.999 04	0.992 39
$1,4-Bu(OH)_{2}$	1.01622	1.01011	1.00415
$1,3-\Pr(OH)_2$	1.05370	1.04744	1.04110
$1,5$ -Pen $(OH)_2$	0.99279	0.98673	0.98125

surements of the V_m^{E} carried out for binary mixtures of the strongly self-associated hydroxylic compounds: diols + water.